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Abstract—We study the age of information, which is a recently
introduced metric for measuring the freshness of a continually
updated piece of information as observed at a remote monitor.
The age of information metric has been studied for a variety
of different queuing systems, and in this work, we consider the
impact of buffer sizes, packet deadlines, and packet replacement
on the average age of information for queuing systems. We
conduct a simulation-based study in which we modeled a wide
variety of queuing systems and control mechanisms in simulation
and computed the average age of information. We first study
the buffer size alone to see how it affects the average age, and
then we look at adding a packet deadline for such a system. We
consider packet deadline control in the buffer only and in both
the buffer and server, and we also compare the performance with
a random deadline. We observe how the buffer size and deadline
are optimized for the age, and we identify general trends for how
to choose values of control mechanisms under different conditions
of the packet generation rate. Lastly, we study the ability to
replace packets in the buffer with newly arriving packets, and
we are particularly interested in whether we can achieve the
performance of such a system by controlling buffer size and
deadline alone, for systems in which we do not have the ability
to do packet replacement.

I. INTRODUCTION

There are many military applications for which the timeli-
ness or the freshness of information observed at some monitor
is most pertinent, such as various tracking (e.g., target or blue
force tracking) and sensing (e.g., surveillance or spectrum
sensing) applications, or even networking protocols (e.g.,
routing). We focus on systems that are characterized by a
source that transmits some status (e.g., sensor data, list of
neighboring nodes) to a monitor such that the information
observed at the monitor at any time was recently generated. A
metric called the age of information or status age was recently
proposed to study the performance of such systems with the
specific goal of characterizing the freshness of information at
the monitor. The age at the time of observation is defined as
the current (observation) time minus the time at which the
observed state was generated [1]–[3].

The existing research on the age metric has studied a variety
of queuing systems, with different arrival/departure processes,
number of servers, and queue capacities. In [1] it was shown
that deterministic arrival and departure processes achieve a
lower average age than memoryless processes. In [4], [5], the
average age was shown to decrease as the number of servers
increases. Also, it was shown in [6] that the age with a buffer

capacity of zero or one can be much lower than an infinite
capacity queue, and they showed that the ability to replace
packets in the buffer when newer packets arrive does even
better.

We are interested in further exploring the various mecha-
nisms for controlling the age through a queue. One mechanism
to study is the size of the buffer, which has only been studied
for 0, 1, and infinity. It was shown in [6] that a smaller buffer
size is not always better, since for some smaller values of
packet arrival rate λ, the average age is lower for a buffer size
of 1 than 0, but for larger λ, it is better to have a buffer size
of 0. Thus, it would be interesting to investigate other buffer
sizes and see which is optimal under different conditions.

Another mechanism we are interested in studying is the use
of a packet deadline to discard packets in the buffer. Our prior
work [7] studies the impact of this type of packet deadline for
a buffer size of 1, and a properly chosen deadline was shown
to improve the average age compared to not using a deadline.
Further study into the age with a packet deadline for various
buffer sizes as well as random deadlines, packet control in the
server, and packet replacement are of interest.

In this work, we conduct a simulation study on the afore-
mentioned control mechanisms and their impact on the average
age in a single server queue. We use MATLAB to simulate
a queuing system with varying buffer sizes, deadline policies,
and packet replacement policies. Simulations are run for an
average of 104 samples and results are averaged over 100 runs.

II. SYSTEM MODEL

We study a system in which a source transmits packets
to a monitor through an M/M/1/k queue, which has a total
capacity of k − 1 packets in the queue and one packet in
service. Typically, an arriving packet that encounters a full
capacity system never enters the system and is dropped. A
system may or may not have a deadline imposed on packets
in the system, in which a packet that is waiting in queue for a
time period longer than the deadline is dropped. We consider
two cases, where a packet can and cannot be dropped due
to an expired deadline after entering the server. A plot of
the age of information for an M/M/1/2 system with a packet
deadline is shown in Figure 1, where transmissions occur at
times t1, t2, . . ., and receptions at the monitor occur at times
t′1, t

′
2, . . ..
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Fig. 1. Age of information for an M/M/1/2 system with a packet deadline.

We refer to the time between packet generations as the
interarrival time Xi, i = 2, 3, . . ., which is equal to ti − ti−1.
The interarrival times are modeled as random; consequently,
the source does not have control over the exact times at
which it can transmit updates. In our model, the Xi’s are i.i.d.
exponential random variables with rate λ.

We call the time spent in the server by packet k the service
time Sk, k = 1, 2, . . ., which is equal to t′k − tk. The service
time Sk is modeled as exponential with rate µ, and all the Sk’s
are i.i.d. and independent of the Xi’s. The total time spent in
the system from arrival to service is given by Tk, k = 1, 2, . . .,
where Tk = Wk + Sk, with Wk being the time spent waiting
in the queue.

The age of information at time t is defined as ∆(t) =
t − u(t) [1], where u(t) is the timestamp of the most recent
information at the receiver as of time t. Given this definition,
we can see that the age increases linearly with t but is reset
to a smaller value with each packet received that contains
newer information, resulting in the sawtooth pattern shown
in Figure 1.

We also define the interdeparture time Yk as the time
between the instants of complete service for the k−1st packet
served and the kth packet served. This will be useful in the
computation of the average age.

III. EFFECT OF BUFFER SIZE

We first consider the impact of the buffer size on the age
of information. This was studied for a buffer size of 0 and
1 in [8], which can be analyzed using a graphical argument
(average value of the curve in Fig. 1) to arrive at the expression

∆ = λe(
1

2
E[Y 2

k ] + E[Tk−1Yk]). (1)

Solving for the various terms in (1), the average age for the
M/M/1/1 and M/M/1/2 were shown to be
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From (2) and (3), we determine here which values of ρ = λ/µ
the age ∆M/M/1/1 is less than ∆M/M/1/2 (and vice versa):

2− 1

ρ+ 1
< 3− 2(ρ+ 1)

ρ2 + ρ+ 1
2(ρ+ 1)

ρ2 + ρ+ 1
− 1

ρ+ 1
< 1

0 < ρ(ρ2 + ρ− 1)

For ρ > 0, the inequality is true when ρ > (−1 +
√

5)/2 ≈
0.618. That is, when ρ > 0.618, M/M/1/1 achieves a lower age
than M/M/1/2, since packets are arriving frequently enough
relative to the service rate. However, when ρ < 0.618,
M/M/1/2 achieves a lower age since packets do not arrive
frequently enough, and it helps to have an update packet stored
in the buffer to be transmitted.

From this analysis of the average age of the M/M/1/1 and
M/M/1/2, we have demonstrated that the relationship between
age and buffer size is not simple, in that while having a smaller
buffer reduces the waiting time, this does not necessarily
achieve a lower age. Given the complexity of solving for
the average age for the M/M/1/1 and M/M/1/2 systems and
the certain complexity of solving for the average age of the
general M/M/1/k system, we use simulation to find the age
for an M/M/1/k system, for various values of k. The results
are plotted in Figure 2 for µ = 1. We again see that for lower
packet arrival rate λ, increasing the buffer size actually leads
to a slight decrease in the average age, but for larger λ, larger
buffer sizes have a more detrimental impact on the average
age.

If we fix the buffer size to be 0 (M/M/1/1), the average
age is strictly decreasing in λ since there is no waiting in
the buffer. For buffer sizes greater than 0, the average age
initially decreases in λ, but eventually starts to increase since
at some point packets are arriving frequently enough so that it
is not necessary to hold any in the buffer. This effect is more
significant for larger buffer sizes, but even for the M/M/1/2
case, there is a point at which the average age starts increasing.
We can determine that point as follows:
∂∆M/M/1/2

∂ρ
= −1

ρ
− 2

ρ2 + ρ+ 1
+

2(ρ+ 1)(2ρ+ 1)

(ρ2 + ρ+ 1)2)
= 0

ρ4 + 2ρ3 − 3ρ2 − 2ρ− 1 = 0

For non-negative and non-complex values of ρ, the last equal-
ity is true for ρ ≈ 1.427. In our simulations, the minimum
among λ = 0.25, 0.5, . . . , 1.75, 2 occurs at λ = 1.5. As the
buffer size increases, the value of λ at which the minimum age
occurs decreases, since this prevents the buffer from filling up
with older packets.

The optimum average ages for λ = 0.25, 0.5, 1, and 1.5 and
the optimum buffer size are provided in Table I. For λ = 0.25,
a buffer size of 10 is optimal, but for λ = 0.5, the optimum
buffer size quickly goes to 1, and then to 0 for larger values
of λ (recall, M/M/1/1 is better than M/M/1/2 for ρ > 0.618).
Over all values of λ and buffer sizes, the minimum age is
achieved for a buffer size of 0 and λ → ∞, which achieves
an average age of 2/µ (can be derived from (2)).



TABLE I
OPTIMUM AVERAGE AGE, EFFECT OF BUFFER SIZE

Minimum Optimum % improvement % improvement
λ Age Buffer Size vs. M/M/1/1 vs. M/M/1/2

0.25 5.0698 10 2.49% 0.51%

0.5 3.2850 1 1.28% −

1 2.4997 0 − 6.19%

1.5 2.2705 0 − 13.13%

2 2.1682 0 − 18.01%
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Fig. 2. M/M/1/k, µ = 1.

IV. EFFECT OF DEADLINE

A. Packet Control in Buffer Only

We now add the element of subjecting each packet to a
deadline, where a packet that has not been served may get
dropped from the system if the deadline expires. We first
consider the case where the deadline affects packets in the
buffer only, i.e., packets that make it to the server before the
deadline are never dropped. We mathematically analyzed the
M/M/1/2 system with a deadline in [7], again solving for the
terms in (1). Our numerical results showed that a properly
chosen deadline can improve the age compared to the M/M/1/1
and M/M/1/2 without a deadline.

We simulated the M/M/1/k system with a deadline and
provide the results in Figures 3–5 for λ = 0.5, 1, 1.5, 2,
and µ = 1. For smaller λ (= 0.5, Fig. 3), we observe that
increasing the deadline reduces the age, and that larger buffer
sizes seem to do better, since more packets are stored and the
deadline prevents them from getting too stale in the buffer. For
λ = 1 (Fig. 4), the age appears to decrease and then increase
with the deadline, and a similar phenomenon is observed with
the buffer size. If the deadline is too small, then packets
are removed too quickly which leads to fewer updates. If a
deadline is too large, packets can get too stale and it would
be better to drop them and wait for another packet to arrive.
For a properly chosen deadline, the buffer size should also be
carefully chosen for this value of λ. The minimum average
age is lower than that of the λ = 0.5 case by 24% (2.4454
vs. 3.2258) and is achieved with a buffer size of 24 and a
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Fig. 3. M/M/1/k with deadline, packet control in buffer only, λ = 0.5, µ = 1.

deadline of 0.5. For a larger λ = 1.5 (Fig. 5), a lower age is
achieved with a smaller deadline, since packets are generated
frequently enough to be trimmed via deadline, so, in effect,
fresh packets are sent at a sufficiently high rate. Of the values
simulated, the optimum occurs here for a buffer size of 14 and
a deadline of 0.3. The minimum average age is lower than that
of the λ = 0.5 case by 31% (2.2369 vs. 3.2258). Finally, for
λ = 2, the optimum buffer size is still 14 but the optimum
deadline is reduced to 0.1. The minimum average age is lower
than that of the λ = 0.5 case by 33% (2.1486 vs. 3.2258).

We have provided the optimal ages for the four values of
λ in Table II. The observation is as follows: as λ increases,
the minimum age decreases, and it is achieved by reducing
the deadline, since more arrivals requires more aggressively
trimming the packets in queue. The buffer size does not
have as clear of a trend. It is noted that the % improvement
appears small compared to the case with no deadline, but such
an improvement may be critical for a real-time system. In
addition, we will see in the next section that the deadline has
a significantly greater effect when it can affect the packet in
the server.

TABLE II
OPTIMUM AVERAGE AGE, PACKET CONTROL IN BUFFER ONLY

Minimum Optimum Optimum % improvement
λ Age Buffer Size Deadline vs. no deadline

0.5 3.2258 19 1.2 1.80%

1 2.4454 24 0.5 2.17%

1.5 2.2369 14 0.3 1.48%

2 2.1486 14 0.1 0.90%

B. Packet Control in Buffer and Server

In this section, we also study a case of using a deadline,
but now both packets in the server and the buffer can be
dropped if the deadline expires. The simulation results are
provided in Figures 7-9. For all λ, the age is relatively large
at smaller deadlines because the packets in the server are now
also subject to a deadline, so most packet are dropped. As
the deadline starts increasing, the age starts to decrease. The
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Fig. 4. M/M/1/k with deadline, packet control in buffer only, λ = 1, µ = 1.
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Fig. 5. M/M/1/k with deadline, packet control in buffer only, λ = 1.5, µ = 1.

age and the optimum deadline and buffer size are provided in
Table III. We observe that the optimum deadline decreases as
λ increases. As in the case with packet control in the buffer
only, the buffer size does not show as clear of a trend. In this
case, the average age is less sensitive to the buffer size once it
is sufficiently large (≥ 1). Overall, we observe that the ability
to drop packets in the server using a deadline can improve
the age by as much as 33% when compared to only dropping
packets in the buffer.

C. Random Deadline

We also consider the case of having a random deadline,
specifically an exponentially distributed deadline generated
for each packet, and compare with a deterministic deadline.
We are interested in a model that is analytically tractable
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Fig. 6. M/M/1/k with deadline, packet control in buffer only, λ = 2, µ = 1.

TABLE III
OPTIMUM AVERAGE AGE, PACKET CONTROL IN BUFFER AND SERVER

Minimum Optimum Optimum % improvement
λ Age Buffer Size Deadline vs. buffer only

0.5 3.0305 24 2 6.05%

1 1.9034 14 1.6 22.16%

1.5 1.4820 14 1.2 33.75%
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Fig. 7. M/M/1/k with deadline, packet control in buffer and server, λ = 0.5,
µ = 1.

and can provide a closed-form expression, so we choose
an exponentially distributed deadline, since it restores the
memorylessness of the system. It would be helpful if the
performance with the random deadline can approximately
achieve that of the deterministic deadline. In Figure 10, we
plot the average age vs. deadline for the M/M/1/2 system,
where for the random deadline case, the deadline is actually
the average deadline. The average age for the random case is
similar to the deterministic case for smaller (average) deadline.
As the deadline increases, the age in both the random and
deterministic case go down, but the random case is less steep.
As the deadline increases further, the age for the random case
increases less than in the deterministic case. The randomly
generated deadline appears to have the effect of smoothing
out the average age relative to the deterministic case.
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Fig. 8. M/M/1/k with deadline, packet control in buffer and server, λ = 1,
µ = 1.
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Fig. 9. M/M/1/k with deadline, packet control in buffer and server, λ = 1.5,
µ = 1.
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Fig. 10. M/M/1/2 with Random Deadline, µ = 1.

The minimum age for the random deadline for the M/M/1/2
system and the comparison to the deterministic deadline case
is given in Table IV. We observe that if the deadline is
chosen properly, there is only about a 0.7% loss in using an
exponentially distributed random deadline vs. a deterministic
deadline, which helps assess the value of a theoretical analysis
that utilizes random deadlines.

TABLE IV
OPTIMUM AVERAGE AGE FOR M/M/1/2, PACKET CONTROL IN BUFFER,

RANDOM DEADLINE

Minimum Optimum % loss vs. M/M/1/2,
λ Age Deadline deterministic deadline

0.5 3.2676 0.8 0.65%

1 2.4711 0.5 0.73%

1.5 2.2499 0.2 0.44%

2 2.157 0.04 0.20%

V. EFFECT OF PACKET REPLACEMENT CAPABILITY

We now consider a greater level of packet control in the
queue, in which we have the ability to replace an old packet
in the buffer upon arrival of a new packet. In this case, no
new packets are blocked from entering a full system. This was
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Fig. 11. M/M/1/2* with deadline.

analyzed in [6] and [8] (denoted as M/M/1/2*) and was shown
to achieve a lower age than the M/M/1/1 and M/M/1/2 without
this packet replacement capability. If we always choose to
replace a packet in the buffer with a newly arriving packet,
having a buffer size larger than one has no impact since any
arriving packet that sees a packet in the buffer will replace
it. Therefore, our focus here is on the M/M/1/2 system with
packet replacement. Other types of queue management, such
as a last-come, first-served discipline or replacing packets after
more than 1 packet arrives in the buffer, are outside the scope
of this paper.

A. Packet Control in Buffer Only

We first consider the impact of a deadline on an M/M/1/2
system with packet replacement, where a packet can only
be dropped in the buffer if its deadline expires. We plot
the results of our simulations in Figure 11 for λ = 0.5,
1, 1.5, 2, and µ = 1. We see that the deadline has a
very small impact on the average age. This suggests that
the packet replacement capability prevents the deadline from
having much of an impact on the average age. Of the λ
plotted, only for λ = 2 does the age noticeably (albeit slightly)
decrease as the deadline decreases. The minimum age for the
M/M/1/2 with packet replacement is shown in Table V, and
the % improvement over the case where there is no deadline
is shown to be as much as 2%.

We are interested in studying whether the performance of a
system with packet replacement policy can be achieved with
a deadline only. Figure 11 includes the results for M/M/1/k
with a deadline in the buffer for λ = 0.5, 1, 1.5, 2 and we
choose the buffer size that minimizes the age according to
Table II. Table V shows the % improvement of the M/M/1/2
with packet replacement over these M/M/1/k without packet
replacement results, minimized over the deadline. If the buffer
size and deadline are chosen properly, the age for the M/M/1/k
without packet replacement can be close to that of the case
with packet replacement, particularly for higher λ.

B. Packet Control in Buffer and Server

Now we consider the case where in addition to packets
in the buffer, packets in the server can be dropped due an



TABLE V
OPTIMUM AVERAGE AGE WITH PACKET REPLACEMENT, PACKET CONTROL

IN BUFFER ONLY

% improvement vs. no
Minimum Optimum % improvement packet replacement,

λ Age Deadline vs. no deadline over all deadlines

0.5 3.1652 3 0.29% 2.08%

1 2.4145 2 0.09% 1.39%

1.5 2.227 0.8 1.2% 0.53%

2 2.1441 0.3 2.47% 0.36%
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Fig. 12. M/M/1/2* with deadline and packet control in server.

expiring deadline. The results for our simulations are provided
in Figure 12, where we see that the deadline has a significant
effect on the average age when it affects the packet in the
server. The minimum age values are provided in Table VI,
where the age improvement is up to 40% (λ = 2) compared
to the buffer only case. However, the age is highly sensitive
to the deadline in the vicinity of the minimum age, since the
age approaches infinity as the deadline approaches 0.

TABLE VI
OPTIMUM AVERAGE AGE WITH PACKET REPLACEMENT, PACKET CONTROL

IN BUFFER AND SERVER

Minimum Optimum % improvement
λ Age Deadline vs. buffer only

0.5 3.022 3 4.52%

1 1.9125 1.6 20.79%

1.5 1.4968 1.2 32.79%

2 1.2667 1 40.92%

VI. CONCLUSION AND FUTURE WORK

Following up our theoretical work on the use of a packet
deadline as a way to optimize the age of information, we
conducted a simulation-based study on a broader range of
control mechanisms and their effect on the age, independently

and jointly. We observe that when we consider the buffer
size alone, our theoretical analysis shows that the age for
the M/M/1/2 system is smaller than that of the M/M/1/1 for
ρ < 0.618. For ρ > 0.618, our simulations show that the
age can increase quite drastically as the buffer size increases.
Considering λ and buffer size jointly, the best performance
occurs when the buffer is reduced to zero and λ is increased
as much as possible. When we add the packet deadline as
a control mechanism for packets in the buffer only, there is
a slight increase in age performance (2%) if the deadline is
decreased as λ increases. If the deadline can affect packets in
the server, there is a major increase in the age performance
(33% at λ = 1.5). If we add the ability to replace packets in the
buffer, the deadline has a small effect on the age performance
over all values of the deadline. The best performance for
the case without packet replacement can be very similar to
that of the case with packet replacement, if the buffer size
and deadline are chosen optimally. When the deadline can
impact the packet in the server, the improvement is again more
significant as in the case without packet replacement, but the
age is highly sensitive to the deadline in the vicinity of the
optimal age. Choosing a slightly lower deadline can lead to a
significant increase in the average age.

Future work includes confirming the simulation results in
theory. We would also like to study other control mechanisms,
such as packet replacement that only occurs after more packets
are in the buffer; last-come, first-served queuing discipline; and
allowing packet replacement on packets in the server.
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